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Summary
. In solving deterministic Al problems the data base search for matching the arguments of a
W
’,: o PROLOG expression causes serious bottleneck when implemented sequentially by electronic
B
"""5 systems. To overcome this bottleneck we have developed the concepts for an optical expert system
)
) based on matrix-algebraic formulation, which will be suitable for parallel optical implementation.
¥y
:. v.": The optical Al system based on matrix-algebraic formulation will offer distinct advantages for
Wy
'.. 0 parallel search, adult learning, etc. (For more details see Sect. 2 and attached reference 1).
Lo
( o To optically solve the Al problems which involve multiple arguments we have studied optical
Y
' A architectures to implement vector-tensor and matrix-tensor multiplication. A matrix-tensor
...ﬂ
;::!;. multiplier can provide interconnections between 2-D arrays of processors and 2-D arrays of
'«— memory cells. Conventionally, a matrix-tensor multiplier is based on space multiplexing, therefore,
’:j:"_L requiring extremely large space-bandwidth product from the optical channel. We have devised a
o matrix-tensor multiplier based on random phase coding and multiplexing, and evaluated and
g . compared the performance characteristics of the random phase coded matrix-tensor multiplier with
Aoy : :
i : those of a conventional one. The comparison shows that there exists a trade-off between the
N : : : : ,
.“_{ dynamic range requirements of the system and the space-bandwidth product required by the optical
._ channel, and that the phase-coded matrix tensor multiplier will reduce the space bandwidth product
i
K ‘;’x.' requirements for reasonable dynamic range requirements. (For more details on the matrix-tensor
"y
gg:.: multiplier performances see Sect. 3 and Reference 2).
| J
[ :: In the development of programmable interconnect for optical Al and NI systems, we have
A
, »f‘ investigated the storage properties of various photorefractive crystals. We have found that in
e —_—
Pa SBN:60 crystals the available charge carriers may be very efficiently used to store a large number r
® #
: ‘; (e.g., ~ 450-600 pattemns) of interconnection pattems. (For more details see Sect. 4.) O
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1. Introduction

During the last six months we have been studying the existing parallel computing architectures
for Artificial Intelligence (AI) and Neural Intelligence (NI) in order to advantageously apply optical
interconnects and to design more flexible systems based on space-time tradeoffs. We have been
investigating different relevant topics such as the paracomputer, shared and distributed memory,
reconfigurability of optical interconnect, routing of optical signals, parallel algorithms for sorting

and vector-matrix multiplications, etc.

In the next section we will briefly describe the new approach for mapping Al problems on
optical processing architectures, where we show that typical Al operations such as search and
unification can be performed in parallel using optical processing by devising a new matrix algebraic
formulation. In Sect. 3 we will describe a new approach in implementing programmable optical
interconnect by employing a matrix-tensor multiplier based on random phase coding and
photorefractive crystals. In Sect. 4 we will discuss the results of our studies on storage properties of

photorefractive crystals and their use in programmable architectures for AI and NI applications.

2. Optical Expert System Based on Matrix-algebraic Formulation

The data base search for matching the arguments of a PROLOG expression encountered in
solving deterministic AI problems (such as those encountered in expert systems) often causes
serious bottlenecks, when it is performed serially by sequential electronic machines. The reasons of
this bottleneck arise from the exponential nature of the serial search process, which can be
alleviated by parallel search. Several optical architectures exist for performing matching operations
in parallel. Perhaps one of the most time efficient optical architecture for parallel matching is that
of the vector-matrix multiplier, whose input can be the query vector and the matrix can be the fact
matrix. Hence, in our matrix algebraic formulation each fact relating to two arguments will be
encoded into a binary matrix. Different facts relating to different pairs of arguments will be
encoded into different binary matrices. New facts can be generated by performing matrix-matrix

multiplications and 2-D logic operations. Therefore, optical Al systems based on matrix-algebraic
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formulation offer distinct advantages for adult learning over serial PROLOG based expert systems.
More details about optical expert systems based on our new formulation can be found in the

attached reference 1.

Promising as the matrix-algebraic formulation may be, we recently found also that when the
number of objects that are related by the same fact increases, the space bandwidth product of the
optical vector-matrix multiplier will also have to be increased and may become a limiting factor.
To solve those Al problems whose facts contain more than two arguments we have been studying

optical architectures for vector-tensor and matrix-tensor multiplications.

3. Matrix-tensor Multiplication by Random Phase Coding

A matrix-tensor multiplier can be employed to provide interconnections between a 2-D array
of processors and a 2-D array of memory cells in similar ways as a vector-matrix multiplier,
providing interconnections between 1-D arrays. To reduce the space-bandwidth product
requirement of the matrix-tensor multiplier we studied the incorporation of random phase codes
into the matrix and tensor components. We evaluated the performance characteristics of the
random phase coded matrix-tensor multiplier and compared them to those of a conventional one
based on space multiplexing (see Figs. 1, 2). This comparison shows that there exists a trade-off
between the dynamic range requirements of the system and the space-bandwidth product required

by the optical channel. For reasonable dynamic range requirements the phase coded approach to

matrix-tensor multiplication can reduce the space-bandwidth product requirements. More details

! on our phase-coded matrix-tensor multiplier can be found in the attached reference 2.

4. Programmable architectures

A parallel processing system with programmable architectures for AT and NI will require
storage of large capacity to store the interconnection patterns. In our attempt to develop such
storage systems we used the experimental setup of Fig. 3 to study the storage properties of various
photorefractive materials. We investigated the dependence of the write and erase time response

asymmetry (see Fig. 4) on different parameters (e.g., applied electric field, input intensity, crystal
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thickness, etc.). The photorefractive response time for both writing and erasing a diffraction grating
in a 3mm thick crystal of SBN:60 as a function of applied electric field is shown in Fig. 5. The
ratio (R) of the photorefractive erase time over write time is plotted in Fig. 6 as a function of an
externally applied electric field. We found that an asymmetry of almost 30 was reached at 8
kV/cm. This asymmetry could be further enhanced by increasing the input writing beams intensity

and the thickness of the crystal. The larger the asymmetry is, the larger is the number of holograms

that can be stored in the the photorefractive crystals. In our preliminary experiments we have
stored 30-40 planes of 2-D information using a crystal providing a ratio R = 2. Assuming that this
asymmetry results from a more efficient use of the available charge carriers, we expect that the

memory capacity of such crystals can be increased to 450-600 planes of information.

5. Conclusions and Further Directions

During the past six months we have devised a new optical expert system based on matrix
algebraic formulation and suitable for parallel optical implementation. We are continuing the study
of our matrix-algebraic formulation for Al by finding the relations between the fact matrices and
rules so that sparse or infrequently used fact matrices can be incorporated into rules to save memory
space. This approach will a’lso be compared to other parallel Al knowledge base systems that use

matrix formulations.

We have also developed a new approach to implement programmable optical interconnect by

employing a matrix-tensor multiplier based on random phase coding and compared its
performances to those of a conventional one based on space multiplexing. We are presently
implementing experimentally the phase coded matrix-tensor multiplier using dichromatic gelatin

and photorefractive crystals.

studied the storage properties of different photorefractive materials and predict that in SBN:60 the
available charge carriers can be very efficiently used, therefore allowing very large storage capacity

E In our development of optical storage for programmable (interconnect) architecture we have
E (i.e., ~ 450-600 inteconnection patterns). We are currently investigating the maximum storage
'
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capacity of photorefractive SBN:60 experimentally. Concurrently, we are conducting a study on
the reprogrammability of interconnection networks (i.¢., erase some of the stored interconnection
pattern and write some new ones). Results of these and other studies will be provided in our future

reports.
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Figure 3.  An experimental set-up designed to measure the write time and erase response time
characteristics of photorefractive materials. the first pair of plane waves from the
argon laser is used to write a grating in the photorefractive crystal. A HeNe beamn
which is Bragg-matched to this grating is then partially diffracted into a photodiode,
whose output is stored in a chart recorder. This way the grating’s presence can be
continuously monitored. The grating is then erased by blocking the first beam pair
and immediately illuminating the crystal with a second pair of beams from the argon
laser. A new grating, for which the HeNe beam is not Bragg matched, is written in
the crystal, eventually replacing the first grating. The write and erase times are
directly measured. The ratio of the erase time to the write time, R, can then be
calculated.

:c-.

,'s,- =

The intensities of each of the four argon laser beams are unifrom across the crystal
surface and equal to one another to within 5%. The crystal is held between two
electrodes and immersed in high voltage oil to prevent arcing between the electrodes.
The field is applied parallel to the grating vector of the primary grating. Reversing
the direction of the field did not significantly affect the result. The face of the crystal
was normal to the primary beam pair. Rotating the crystal by up to ten degrees in
either direction did not significantly aiter R, although the overall diffraction efficiency
was reduced. The time required to switch between beam pairs much less than the
response times observed. The intensity of the HeNe beaem used to read the grating
was small compared to the Ar writing beams, so that erasure of the grating by the
reading beam was negligible.
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'_C:" Figure 4. A typical write-erase time cycle of a 3mm thick SBN:60 crystal, measured at different
3 values of externally applied electric field parallel to the grating wavevector. The
asymmetry in write and erase time is enhanced by the externally applied electric field.
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03 increases to a peak at 5 kv/cm, then decreases, while the write time decreases

® monotonically with applied field.
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volume of the crystal. Date Started: 5-24-88

LA ag)

P
h Y
P

-;.4.
X
o
e
W
e

BTN g R R N R R T TR L AL N A AT AR AT . 5%
P W g e e Sk A A A SR L R ) ARSY IR '& S0 N BACNONIC ]
.4 > IO L » W -, A - AN AARARS K A l.‘.l.“b',t A% ‘.“l ; c.i‘vel 2% AN N 'q".'.. Ny . q?i;:g';"’l" :fi':',l‘t:"hlhfl‘o!l,c!'



REF.1

An Optical Expert System Based on Matrix-algebraic Formulation

Jack Y. Jau, F. Kiamilev, Y. Fainman, S. Esener and Sing H. Le2
Department of Electrical and Computer Engineering

University of California at San Diego
La Jolla, California 92093

Abstract
This paper describes an expert system paradigm based on matrix algebra. The
knowledge base of the expent system is stored in binary matrices, while the leaming and
the inference processes are done by matrix algebra operations. This method is highly
parallel and can take full advantage of the inherent parallelism and connectivity of optics.
An opto-electronic architecture that implements this system is presented. In addition, the

method is compared to the sequential search methods written in the programming
language Prolog in order to illustrate their differences and commonalities.

1. Introduction

Antificial intelligence (AI) is a field concemed with the simulation of intelligent
behavior[1]. Expert systems have been one of the most successful applications of AI[2].
Expert systems encode knowledge in the knowledge base and perform intelligent interac-
tions with it. Therefore, knowledge representation has become a fundamental problem in
Al. One approach to knowledge representation is the use of semantic networks (see Fig-
ure 1 for an example), where the relations (or attributes) between objects and values (e.g.
Mary, football, etc.) are described by a directed graph consisting of nodes and labeled
edges (e.g. Likes and Member). | To store a semantic network, conventional electronic
expert systems use a tuple ordered set (attribute, object, values) . Many of these expert
systems are based on the production system paradigm[3-4], where facts and rules consti-

tute a knowledge base. Facts define the relationships between objects, and rules define




the procedures for deriving new relations from existing ones. Prolog is a popular Al

language that implements the production system paradigm(5].

Conventional electronic expert systems sequentially search the knowledge base for
the appropriate facts and rules in order to find solutions to a query. The use of these
electronic systems to solve symbolic logic problems has been limited, due to the ineffi-
ciency of such massive searches. To support numerous Al applications, more powerful
computing machines capable of performing a massively parallel search are needed.
Parallel search allows an expert system to find solutions efficiently because all the poten-
tial solutions are considered simultaneously. Some systems that perform symbolic com-
puting and inference utilizing the parallelism and connectivity of optics have recently
been presented. For example, Eichmann and Caulfield[6] proposed an optically assisted
expert system using optical spatial light modulators(SLMs) to store knowledge. Warde
and Kottas[7] described two query-driven hybrid optical inference machines. One was
based on the conventional matched-filter concept, which is similar to the optical correlo-
graph system described by Willshaw and Longuet-Higgins[8]. The other used mapping
templates to store the relationships between objects; conclusions to the query are inferred
by applying these mapping templates to objects in the order prescribed by the rules. Szu
and Caulfield[9] generalized the prior work by representing the knowledge in an associa-
tive memory matrix and storing data explicitly in a 2-D outer product matrix so that logic
inference could be performed at an extremely fast rate.

In this paper, we attempt to formulate an expert system paradigm based on matrix

algebra in a form which is more suitable for optical implementation. Key issues related

to this expert system paradigm, including knowledge representation, leaming capability
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and the inference engine will be discussed in Sections 2 and 3 respectively. A com-
parison of the proposed method with sequential search-based methods written in the pro-
gramming language Prolog is provided to illustrate the differences and commonalities
between them. We base our comparison on sequential Prolog because it is currently one
of the most widely used programming language in the Al community, although parallel
versions of the language are available. In Section 4, we will present (as an example) a
maze search problem to show the parallel processing nature of the matrix encoding
method. An optical architecture for the implementation of the proposed expert system

paradigm 1s described in Section 5. Section 6 concludes the presentation.

2. Knowledge representation of facts and rules

Knowledge representation is a key issue in the design of a knowledge-based expert
system. It will affect the architecture of the system as well as the efficiency of knowledge
retrieval from the system. In this Section we describe a matrix encoding method for
knowledge representation, where facts of relations among objects are encoded in binary

matrices, and nmles are manipulated in matrix algebraic form.

2.1 Marrix encoding of facts

Let R} and R} be two sets of objects,

RE =4 x1,%2,..%, } R} ={Y1,Y2Ym M

where x; and y; are objects in R} and R}, respectively. If the objects in R} are related to

the objects in R}, then, their relationships can be described by a set of facts. In logic for-

o
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mulation, a facr with two arguments can be seen as a binary function of the two related
objects; that is, if the relationship between x; and y; is *rue, then fact (x;, y;) = 1, other-
wise fact(x;,y;) = 0. In our matrix encoding method, facts of the same relationship (i.e.
all the tuples with the same attribute) are encoded in a binary matrix. If fact (x;, y;) =1
(true) or fact (x;, ¥;) = 0 (false), then the matrix element [F;], at the i-th row and the j-th
column of matrix F (R;.R}"), is equal to 1 or 0, respectively; i.e.

1 true .
[F,‘j]=faCI(Xi,)’j)= O false xleva ‘ ER (2)

or

YiY2, oYl Yn.
X1
2
FRLRM=. |. . ... ... | 3)
Xi A

Xm

where F (R% R} (or F for short) is called the fact matrix for a certain relation between
R% and R}'. For example, we illustrate in Figure 1 a semantic network, where a node
defines either the object or its value, and an arrow indicates the relationship between
object and value. Based on our proposed matrix encoding method, the semantic network

of Figure 1 can be fully described by the matrices L (for relation Likes) and M (for rela-

tion Member),
ohn Mary David Ann
Johmn |1 0 O 1
L=Mary | 0 1 1 0 4)
David| 0 0 1 0
Ann 1 0 0 1
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ootball baseball tennis

John 1 0 0

M=Mary | 0 0 1 (5)
David | 0 1 0
Ann 0 0 |

It is useful to note that the likes relation matrix(L) is a square matrix and relates objects
of the same set R; = Ri = { John, Mary, David, Ann } to one another, while the Member
matrix(M) is a rectangular matrix and relates objects in two different sets, Ri = { John,

Mary, David, Ann } and R; = { football, baseball, tennis }, to one another.

2.2. Marrix algebraic formulation of rules

The 9ther important element of a knowledge base in an expert system consists of
rules, which can be used to generate facts for new relations from given or aiready known
facts. We may consider, in general, that a rule is a function of facts. A new fact can be
concluded, from the function, through a sequence of logic operations applied to the
known facts. In the matrix encoding method, logic operatiqns between relations are car-
ried out by thresholding the matrix-matrix product, for the AND operation, and by thres-
holding the matrix-matrix sum, for the OR operation. Therefore in this paper, all the
matrix algebra operations presented are followed by an implicit threshold operation. For
example, given three matrices A (R}), B (R'y") and C(Ré) of known facts, if a rule says
that "M is true if C is true or both A and B are true”, then this rule can be formulated in

matrix algebra form,

M(R7,R))=C(RZ,R) + A(RZRY)B (R} ,RY), (6)

where M is the fact matrix of a new reladon. As another example, let us define the




following rule:
If (x Likes y) and (y is a Member of the z team),

then x may like to Warch z game.

The new relation Warch(W) for x and = is true, if both relations Likes(L) for x and y and

Member(M) for y and z are true. In matrix algebraic formulation, the fact matrix W can
v.:‘.'ue:‘ be generated from L in Eq.(4) and M in Eq.(5) by a matrix-matrix multiplication opera-
l’

tion; i.e.

-1 001 - 100 ] football baseball tennis

::",. 0110 001 John |1 0 1 ]
... W=LM= 0010 |lo10 | = Mary 0

1 1
" L Jt J Ann 1 0 1

(7)

W It should be noted that all the new facts for the same relationship are generated simul-
:::"'- taneously in parallel by a matrix-matrix multiplication, and are encoded in a single
Nl " matrix, even though only some of the new facts may be needed to solve the problem.
D; This is different from most conventional expert systems, where only the needed facts are

generated one at a time.

.
-
a

2.3 Comparison with Prolog

f "’:’f’?fj ¢ b

P I

A Prolog expert system stores and processes all the facts separately. Consider the

X R R R
P A
Ay

facts of relationships Likes and Membership in the preceeding examples. The Prolog

5 @ =
o

code for these facts is:

oy Likes(John, John)
Likes(John, Ann)

A\ Likes(Mary, Mary)

)
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e
R
R
A -7-
L
R,
" . .
e Likes(Mary, David)
KA Likes(David, David)
g;::,- Likes(Ann, John)
Likes(Ann, Ann)

N Member(John, football)
::“,': Member(Mary, tennis)
e Member(David, baseball)
:: Member(Ann, tennis)
] L 4
:;' Only the facts for which the relationship is true are stored in the knowledge base. In con-
el
'::. E trast, in the matrix-algebra encoding method all the facts (true or false) of the same rela-
s

* tion are stored in a single binary matrix. All the facts stored in the same matrix are later
N
::‘::; processed simultaneously.
W 0"
"..
i:: ) The number of arguments in a fact can be arbitrary. For example, the fact

"Gives(John, Mary, book)" has three arguments. In Prolog, the processing time increases

with increasing number of arguments. In contrast, in matrix-algebra encoding method

.;'h‘d".‘h"-"-!
LA AIT

P

the number of arguments in a fact will determine the rank of a tensor, which stores the

e

fact (e.g. two arguments determines a second rank tensor which is a matrix). Therefore,

e
E &

A

the matrix encoding is capable of operating on more than two arguments, but at the

\&
o

expense of an increase in space complexity.

-
=

In Prolog conclusions are derived from rules sequentially by asserting the left side

A
-

S Xy ~
Pl ok ] JLA.{

LY

of a rule whenever all the relations on the right side of the rule can be unified. For exam-

e

ple, the rule for Watch given earlier translates into:

o )
[

oy

Watch(x,z) :- Likes(x,y), Member(y,z) ,

o
rH®

o
AR

and a new fact Warch between x and z is asserted, if prolog find that both the facts

A

[Care ol el
'y

Py Likes (x,y) and Member (y,z) are true for some objects X, y and z. This derivation is done

P
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by sequentially searching the knowledge base for every matching solution. In addition,
the newly derived facts are usually not saved to avoid increasing the knowledge base and
the search time to find the solution. In contrast, with the matrix encoding method all the
conclusions are generated simultaneously and can be saved without extra overhead in

search time as shown in Eq.(7).

3. Learning and the inference engine

In an expert system, inference is the process to find a solution to a query, while
learning is the process of updating the knowledge base. Conventional electronic expert
systems use sequential search with unification (e.g. pattcm-n;atching process) to perform
inference and leaming. In this section a parallel scheme is described, based on the matrix

encoding method that updates the knowledge base and answers queries.

3.1. Learning: a dynamic knowledge base

In a matrix-algebra based expert system, leaming can be implemented simply by
using rules, where new relations can be generated from known relations and facts in the
knowledge base. As shown in Eq.(7), given known relations Likes (L) and Member (M),
the new relation Warch is learned by performing matrix-matrix multiplication. An optical
matrix-matrix multiplier can offer much help in speeding up the leaming of such an
expert system.

In special cases when an existing relation has to be updated,

Lnev =Lold + (LOH‘G)t , (8)
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! R a gain matrix of leaming G is required as illustrated by the following example. The fol-
B
"
:;::;. lowing rule
{
Py If x Likes "Mary", then "John" Likes x,
b
Ty
‘\ can be expressed in matrix algebraic formulation by
t
‘ * John Mary David Ann__4 John Mary David Ann
,S, : Johmn |1 1 1 1 Jonm [0 1 0 0
e Mary |10 O 0 0 =Mary |0 1 0 0 ‘G (9)
- David /[0 0 0 0 David [0 1 0 0
o Ann |0 O 0 0 Ann 0 1 0 0
ha
“..‘.
[}
::“‘. On the right-hand side of Eq.(9) the matrix indicates that "x Likes Mary" and x could be
W -
'i' John, Mary, David or Ann, while on the left-hand side of the equation the matrix indi-
K
'}. cates that "John Likes x". Therefore, the gain matrix G is needed to equate those two
;1-~ matrices. Alternatively,G can be found simply by putting "1" in the intersection of the
¢
E‘:' second row and the first column, which corresponds to the objects "Mary" and "John"
)
,
o respectively; i.e.
\
2%
o [0000
)
; 2 1000
B G=l0000
. 0000
#
-"'\
"'-5_2 After evaluating Eq.(8), using L°% from Eq.(4) and the gain matrix G from Eq.(9), we
o
Py obtain a new fact matrix for the relation Likes; that is
e
.'0‘:‘!
o % John Mary David Ann
[/
t:. Jonn {1 1 0 1
e L™=Mary |0 1 1 0 (10)
2 David| 0 0 1 0
" Ann 1 0 O 1
o
@
s
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Comparing the new fact matrix given in Eq.(10) with the old fact matrix given in Eq.(4),

it is clear that the relation Likes has been updated by a new fact "John Likes Mary".

3.2 Inference engine :
The inference engine finds a solution to a query by retrieving information related to

the object x; from the knowledge base. If the information (e.g. fact) is not immediately

available, the matching rules are tried in order to conclude the query. The above descrip-

tion can be summarized in short syntax form as
solution « query ( x, facts, rules ).

In the matrix encoding method, retrieving from the matrix F a certain fact related to the

object x; is achieved through the following vector-matrix multiplication

y=xF,
“where Z (=<y1,¥2,-,Ym>) is the solution vector, and X (E=<X1,X2,.%n>) is the query
- vector. Both x and y are binary (0 or 1) vectors. If F encodes the facts of relationship
between R} and RJ, each element of x corresponds to one object in R %, while each ele-
ment of y corresponds to one object in Ry'. The i-th element of the query vector x is set
to indicate that x; is the objeét of interest. Thus, if the j-th element of the solution vector
Z is set after the vector-matrix multiplication of x and F, the relationship between x; and

Yy; is then true.

However, in most cases the fact is not immediately available in the knowledge base,

and a rule must be employed in order to conclude a query. Let us consider an example of
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performing inference in order to answer the query:
What game may "John" like to Warch ?

In this particular case, the query vector is

John Mary David Ann

<1 0 0 0o > (n

£ =
and we inquire facts from relation Warch, i.e. the matrix W. The query can be concluded
by a simple vector-matrix multiplication, x-W. However, if the fact matrix W is not yet
in the knowledge base, the rule given in Eq.(7) must be called to conclude the query; i.c.

. foorball baseball tennis
y:i-W =£'L'M=[ 1 0 1 I (12)

The y vector indicates that the conclusion to the query is:

John may like to watch football and tennis games.

3.3 Comparison with Prolog

It should be noted that leaming is done by rules. In the marrix-algebra based expert
system all the leamed facts are stored. Therefore, one pays a price in space (memory
storage) but gains in processing speed. Adding new relations may increase the matrix
size, without increasing the processing time. In contrast, in Prolog the new facts are usu-
ally not saved. If all the newly derived facts were saved in Prolog, the size of the

knowledge base would increase. This would result in a significant increase in processing

L A I S R S R R L L T T O N N N KM A MO MM L NN M O IIOL I 0 GIONCARE
O O I I St s R R O O ORI
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3 time.
o

e

:f:,::f Prolog is a backward reasoning system, which starts with the goal (query) and tries
::"" to work backwards to satisfy the goal. It solves a problem by sequential search and
e

the .

i:;:s pattem-matching. For instance, to answer the query ?-Warch (John,y), i.e. what game
ol

') John may like to watch?, Prolog searches the knowledge base (facts and rules) for the
‘.'. .

2}

::::‘c predicate Watch and matches the arguments step by step. Prolog also uses backtracking
)
A"I
:::::: to find all possible solutions to the problem. This means that if the pattern-matching fails
{

:sq as Prolog searches through its knowledge base, then it automatically backtracks to its
)
:::" previous step, resulting in a depth-first type of search. Therefore, in Prolog the more
r.lﬁ:l

'}

" arguments and rules that are used, the longer it takes to solve the problem. In contrast,
.\3: the matrix algebra based expert system generates all the solutions to the problem at one
o

= 2
! :}{" time, even though some of the solutions are irrelevant to the goal. The parallel nature of
1.3AY
¢
a:;.:’_ optics eliminates the need for backtracking through the knowledge base.

)
1ah
X

:E:' - 4. Case study: Searching

Pt A
2 . : : : :
KN To illustrate the differences, in terms of knowledge representation and searching
T

) o
:E N algorithms, between Prolog encoding and the matrix encoding methods, let us consider
Sy
N

.b the problem of searching through the maze shown in Figure 2(a). The simplest Prolog

N

',;“\ program for solving this maze is

-

74
AN

o DR(A B).
it DR(B,E).
A DR(B,C).
W DR(D,E).
iy DR(C,D).

DR(E,F).
s DR(E,G).
...c,
‘e
Apgd
,:’.
e
o
G
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GO(XX).
GO(X\Y) :- DR(X.Z), GO(Z,Y).

where DR defines the door between two rooms, and GO(X,Y) is a rule that attempts to
find a path from room-X to room-Y. To find if there is a path from room-A to room-G, a
query ?- GO(A,G) is presented to Prolog. Note thart this is equivalent to searching for a
path between nodes A and G in the graph shown in Figure 2(b). Prolog would use
sequential searching with backtracking to find this path. Accordingly, the time to find
the path increases with the number of rooms and doors in the maze. The more rooms and
doors there are, the longer it will take for Prolog to find the path. Finding the optimum
(e.g. shortest) path will require even more time because there could be multiple solutions.
In addition, the above Prolog program may get into an infinite loop (e.g. B-C-D-E-B-C-
D-E-...). To avoid the looping problem, one can keep a list of rooms visited so far and
avoid visiting the same room twice. This list will also give us the path from room-A to

room-G.

In the matrix encoding method, the maze is encoded in a matnix D,

ABCDEFG.
1100000
1110100
0111000
0011100
0101111
0000110
0000101

QMmO >

A recursive rule for GO is formulated as an iterative vector-matrix multiplication:

2 =x1D,

el .
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y
) To indicate that the search starts from room-A, the initial query vector would be |
W |
W 29 =< 1000000 >. During the iterations, the following vectors are generated: ‘
W oy g g |
B
‘o . ABCDEFG
- XA"=<1000000 >°
J
" 2=<1160000>,
) —
. AP =<1110100>,
A :
. W=<1111111>
o Xq' = .
ELA
(" * Each output vector in the above sequence indicates the rooms that can be further reached
ry
N from room-A. For example, the vector A ) indicates that we can get into rooms B, C and
<
25
::- E from room-A because the vector elements which correspond to these rooms are set to
B LY .
"1". Since the vector element associated with room-G is set in x§, we conclude that
b~ -
AN
K< there is a path between room-A and room-G. The superscript of 1(3) indicates that it
L
' ~ takes three steps to reach room-G from room-A. The time needed to find an answer to 2

query in this search problem is independent of the number of doors, and the maximum
number of vector-matrix multiplications (i.e. in the worst case) is proportional only to the

number of rooms in the maze. Note that with this approach, an infinite loop will never

occur. For an arbitrary graph, this search method always gives the shortest distance

between two nodes. But the actual path between these two nodes is not provided. If the

- - g Y " 4 .
o b T P W NN Y B A [ RN X

path information is desired, we have to actually walk down the graph to find the path,

and this becomes a sequential search problem.

The above example illustrates the approach employed by the matrix encoding

method for solving a search problem. It speeds up the search but requires extra memory
space in order to store matrices. Although the mawix encoding method may not have

problems with run-time, it may run into combinatorial explosion in space when dealing

L
)
n,
49
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with huge search problems. There is essentially a trade-off between space and time

requirements in solving these problems.

5. Optical Architecture
In the above sections, we have demonstrated that solutions to Al expert systems

could be formulated in terms of simple binary matrix operations. These operations

include vector-matrix and matrix-matrix multiplication, as well as some logic operations.

The information flow in matrix-algebraic expert systems for a sample query is
shown in Figure 3. The solution y is formed by consecutive vector-matrix multiplica-
tions. The fact matrices that are loaded to the vector-matrix multiplier originate directly
from the knowledge base or are computed by matrix-matrix multiplication from other

fact matrices such as M2, M3 and M4. Therefore, an optical expert system architecture

e

- N

should include an optical memory for storing the fact matrices, optical hardware to per-

- e o

form matrix operations and an electronic micro-processor to control the information flow

X

5SS

(Figure 4). The microprocessor also stores the rules in the form of matrix algebraic for-

W

Eé-:. mulations and decides upon the strategy to answer the query. The output of the matrix-
™

g'\‘ matrix multiplier is thresholded to perform the logic AND operation between two rela-
e tions. The 2-D logic unit implements the logic OR operation between two relations by
o

N

! '2 performing a matrix-matrix addition followed by a threshold operation.

e

® To answer a query the microprocessor first forms an appropriate query vector which
:jgﬁf is then translated into optical form by an electronically addressed 1-D SLM. Second, the
\':

f:::’, _ microprocessor determines the required linear algebra relations and their order of execu-
5 tion. Then, it loads the appropriate fact matrices from the optical memory and issues
o

>
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commands to the optical hardware to perform the appropriate operations. Operations that

require iterations such as learning are performed by the optical hardware. The output of

-A‘
)

the optical hardware is then translated into electronic form by a 1-D detector array and

A e A e MY

the result is presented to the user. In certain problems the microprocessor can operate on

») the output of the optical hardware to decide on further action.
i

:.'g For example, to answer a query given by

s,

b

.-:H-nq

y =x(C+AB),

-\,fﬁ the fact matrix C +A B has to be generated before performing the vector-matrix multipli-
" cation. The microprocessor first loads the matrices A and B from the 3-D memory into
"~ the matrix-matrix multiplier (see Figure 4) and computes the product A-B, which is then
“-'»f thresholded and stored in the 3-D memory temporarily. Next, the 2-D logic array per-
ey forms the OR operation on matrices C and A-B that was recalled from the 3-D memory.
The result which is the desired fact matrix C+AB is again stored in the 3-D memory.
The microprocessor then forms the query vector x and loads it into the 1-D SLM, while
the fact matrix C+A ‘B is simultaneously loaded from the 3-D memory into the vector-
o matrix multiplier. Finally, the answer to the query is formed at the output of the multi-

s plier and detected by a 1-D detector array and analyzed by the microprocessor.
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6. Conclusions
This paper described an expert system paradigm based on a matrix-algebraic formu-
! lation and a potential opto-electronic architecture to implement this new paradigm. Facts
‘.
N . . .
’*' of relations are encoded in matrices or tensors, depending on how many objects the facts
W
V) are related to. All the rules for generating new relationships and for learning are formu-
‘ -'l
?'s ‘j lated in matrix algebraic form and are performed in parallel by matrix-matrix multipliers.
]
s
B Y The inference capability can be achieved simply by vector-matrix multipliers, making
o full use of the parallelism and connectivity of optics. However, applications that require
S
"':‘: facts with more than two arguments necessitate a matrix-tensor multiplier. The com-
AR
PY parison of the proposed paradigm with sequential Prolog has shown significant differ-
v
f-\j ences between them in knowledge representation and inference. A comparison of our
o™
; o matrix-algebra based paradigm with a parallel Prolog running on a multi-processor will
{ : : :
; be the next step in our research. A maze search example was discussed in order to illus-
o
i trate the parallel processing nature of the matrix encoding method, which offers signifi-
)
)
K,
%‘ cant gain in processing speed but pays a price in the space required to store large
N
N~

matrices.
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Abstract

AL
AN

A random phase coding technique is utilized to optically perform, in parallel, a matrix-tensor

b
5

multiplication. This technique allows one to decrease the space bandwidth product of the optical

S
R

system at the expense of a decrease in the system dynamic range. The analysis of this trade-off

S

shows that this technique has advantages over the conventional techniques based on space

Paerals

! multiplexing, and therefore, makes it possible to operate on large size 2-D arrays of data using

currently available real time materials.
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I. Introduction

Recently many areas of parallel optical computing have benefited from optical vector-matrix
multipliers, such as, the performance of discrete Fourier transforms [1], analog computing [2,3],
programmable optical interconnection [4], optical neural computing [5], etc. However, many
applications require the manipulation of very large 2-D data arrays, which will essentially require
the ability to perform matrix-tensor multiplication. Some attempts at solving this problem have
been made in the past using space and spatial frequency multiplexing. These conventional matrix-
tensor multipliers offer wide dynamic range; frequently the dynamic ranges are wider than those
available from the Vidicons and the CCD-cameras (~ 6 to 8 bits) that are used in optical systems.
Some optical cémputing architectures (e.g., digital computing and neural computing architectures)
require a dynamic range of only 3 to 5 bits. On the other hand, they require an extremely large

space-bandwidth product (SBP) for the optical channel.

In this letter we will describe a matrix-tensor multiplier based on a random phase coding
v | process, which enables us to reduce the SBP requirements of the optical channel at the expense of
* the dynamic range or the signal-to-noise (S/N) ratio at the output. We will discuss the SBP and
system dynaxmc range trade-offs in light of the fact that certain parallel optical processors have
hngted dynamic range requirements.

2. Matrix-tensor Multiplication Based on Space Multiplexing

To perform matrix-tensor multiplication between a 2-D input signal (matrix), g(x,y) and a
fourth rank tensor, W(x,y), we have to calculate the inner products of the function g(x,y) with each
fm-th component of the tensor Wx,y), where{=1,2,...,Landm=1,2,..,M. The inner product
of two functions can be determined from their correlation function evaluated at the origin.

However, to perform matrix-tensor multiplication in parallel we have to compute in parallel LM

such inner products. One obvious approach has been to spatially multiplex the components of the

L M
tensor in a 2-D plane (see Fig. 1a). This can be expressed as ¥ ¥ W (x—d,y-md), where d is at
f=1m=1




least equal to the spatia! extension of the components of the tensor Wix,y). The function
L M
cx,y)=g(x,y)®Y ¥ Wg,(x—d,y-md) (1)
f=1 m=|
will consist of the spatially superposed correlation terms g(x,y) ® W, (x~d,y—md), where ®
denotes the correlation. At the coordinate points (fd.md) this function provides the values of the
desired inner products (Fig. 1b). Therefore, implementation of a mamix-tensor multiplier by space

multiplexing will require an optical channel of SBP
SBPmT = SBPGLM, (2a)

where SBP) is the SBP of the channel and SBP), is the SBP of the signal. For example, if the

matrix-tensor multiplier is used to fully interconnect an NxN array from the input to an NxN array

at the output (L=M=N), a channel of
SBPyr = SBPy =N* (2b)

will be required. Such alarge SBPyr is required in order to (i) spatially multiplex the tensor
components and (ii) separate the value of the inner products at coordinate point ({d,md) from the
s mdq!qbes of the neighboring correlations. To overcome such large SBP requirements, a
d holographic approach using a volume material of R resolvable points capable of satisfying the N*
requirements where N* = R3 has been suggested [6]. In this paper we propose to employ random

phase coded optical correlation [7], which will be discussed in the following sections.

3. Matrix-tensor Multiplication Based on Random Phase Coding

An optical correlator with the same random phase code incorporated into the two functions to
be correlated provides at the origin of the output the inner product value, while the energy
associated with the sidelobes of the correlation function is scattered over the entire output plane.

To use this concept in implementing a matrix tensor multiplier, one can employ the random phase

F
N
W,
4
A
q
g
(]

code and the shift theorem as described in the following. The correlation function will be given by

' c(x,y) = g(x.y)e**Y @ h(x,y), 3)
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’,!.: where ¢(x,y) is a random phase function and
. "‘ ¥
(M L M .
h(x,y)=% 3. W,m(x—{A,y-—mA)e"”“—“""mA). (4a)
W\ =1 m=1
1l
:" Here A is the sampling period of ¢(x,y) and the shift interval of the tensor components, and is

¢ defined by
Vil A BKS; (4b)

Here § is the sampling period of the random phase process and K is the number of random phase

(. . samples in interval A. The tensor encoding according to Eq. (4) is shown in Fig. 2a.

I To show that the correlation function given by Eq. (3) provides the desired output of the

e matrix-tensor multiplier, we will determine its expectation values (see also refs. 7-9):

L M |7%
S Elcx,y)) = T X | [] 8¢ 4AN-mA)Wi(E4An-mA)dEdn | - PGA,y-mA)
R ' f=1m=1 |—oo

) j LM
o2 =3 3 Cpm PxHA,y-mA), (Sa)
:.l."‘ . =1 m=1

3 _ B where
Cr = [[ 8EHAN-mA)Wy, (E—4A,n-mA)IE dn (5b)

:' ! is the inner product of the input function and the fm-th component of the tensor W(x,y), E denotes

:’ the expectation value, P(x,y) = |a(x,y)|? and a(x,y) is the impulise response of the optical system
'-.\.'-n which is usually a real function. The function P(x,y) describes the blurring effect due to the finite
v bandwidth of the channel. For an ideal optical system P(x,y) is a delta function. Equation (5a) can
o be interpreted as a set of LM pulses spaced at a distance A, while the amplitude of each pulse is
equal to the inner product given by Eq. (5b) (see Fig. 2b). To satisfy the necessary condition to
e separate and to resolve the inner products, we will require the spatial width of the function P(x,y) to

o be narrower than 6.
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However, due to the fact that the random phase coding process is used to reduce the SBP
requirements we are also introducing a noise term to the output, which will reduce the output S/N
ratio. The intensity (S/N) ratio can be defined as

(S/Ny & { —=leey)] } (62)
(Var {c(x,y)”

The S/N ratio of Eq. (6a) can be employed in evaluating the dynamic range of the system,
which is defined as the ourput ratio of the maximum value of the signal to the maximum value of

the noise. The resultant dynamic range D (see Appendix and refs. 7-9) is given by

4K*SBPy

b
LM ©0)

The relation given in Eq. (6b) has been obtained under the assumption that the functions g(x,y) and

Wi (X,y) are real and normalized.

Applying the matrix-tensor multiplier to perform the functions of a fully interconnected

network (L=M=N, SBPy = N?)
D =4K>. (6¢)
Thephase coded matrix-tensor multiplier will require an optical channel SBP given by
SBPyr’ = K*[\SEPy, +(L-1I[{SBPy +M-1)] (7a)
Again for our example of a fully interconnected network (L=M=N, SBP)s = N?) we obtain
SBPyT’ = 4K2SBPy = 4K*N% (7b)

Comparing Eq. (2a) with (7a), one can conclude that the SBP requirements of the channel using a

phase-coded matrix-tensor multiplier are smaller than the ones using pure space multiplexing. For

the example of a fully interconnected network the reduction in the channel SBP is given by

SBPyT N2
SBPyr”  4K2'

®)

-----
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4. SBP-Dynamic Range Trade-offs

The matrix-tensor multiplier based on space multiplexing requires a large SBP (Eq. 2), but
offers very large dynamic range at the output (e.g., D > N?). The matrix-tensor multiplier based on
random phase coding will require less SBP (Eq. 7) at the expense of the dynamic range (Eq. 6).
Therefore, there exists a trace-off between the available SBP of the channel, and the dynamic range
required by a specific optical system. To illustrate these trade-offs we will give two examples,
where the limiting elements of the SBP of the optical channel are the nonlinear materials in which
the correlations are performed. The two types of nonlinear materials are the planar (e.g., 2-D
holographic materials) and the volume (e.g., 3-D photorefractive crystals or volume holographic
materials). We will assume that the planar and the volume materials will be capable of supporting
an optical channel with a SBP of R? and R? respectively. In our examples we will also assume a
fully interconnected network, L=M= '\fS—B_P_M— =N, i.e., the N2 inputs are connected to the N?
outputs via the N* connections of the fourth rank tensor. For a planar materijal, the maximum size

of the input/output arrays for conventional, (N.) and phase coded, (Np) matrix-tensor multiplication

will be given by
e N, = R% (9a)
and
R _ R
Ny=——= 9b
P 2k 2D oo

respectively. The plots comparing the two result of Egs. (9) are shown in Fig. 3 in 2 log-log scale.

Similarly, for a volume material we obtain

a
Z,
It
~
w
=

(10a)

(]
x
w
~
[

(10b)

The comparison plots for a volume material are shown in Fig. 4. One can clearly observe from

Fig. 3 and Fig. 4 that there is a trade-off between the dynamic range of the multiplier and the size of
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the array at which the system can be reliably operated. For example, for a D = 100 and planar
material we will be better off using the phase coded technique for input/output arrays larger than
(20x 20) pixels. Another way of observing the trade-off is to note that in order to operate on an
array of 1000 x 1000 pixels at D = 100 using phase coding, we will need a planar material of SBP
of only 2:10*x2:10* pixels as opposed to 10°x10° pixels using the conventional technique.
Furthermore, a volume material will enhance even more the advantages of the phase coded
technique over the conventional one. For example, to operate on an array of 1000 x 1000 pixels at
D =100 a volume material will require SBP of 10*x10%x10? for the phase coded technique and

10%x10*x10* for the conventional technique, respectively.

5. Conclusions

We have shown that the random phase coded technique is very useful in computing matrix-
tensor operations because it allows us to operate on larger matrix arrays for a given SBP of
nonlinear material in numerous optical signal processing applications. The analysis of the trade-off
between the available SBP and the output dynamic range shows that it is possible to construct
systems with available real time holgraphic materials (e.g., photorefractive materials, organic
materials, etc.) for multiplication of large 2-D arrays of data with a fourth rank tensor in real time.
Systems, for which the dynamic range of D = 100 is quite sufficient, are of high importance in the
areas of neural optical computing and reconfigurable optical interconnects for digital optical

processing applications.
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Appendix
In this appendix we will study the phase coded technique by analyzing the S/N ratio at the
output defined by Eq. (6a). For simplicity we will conduct the analysis for a one-dimensional case.

The S/N ratio of the amplitude of c(x) is defined by

E{c(x)] - E{c(x)}
(Var {c()})”*  (E{(c(x)=E{c(x)})* )"

(S/N)a = (A.1)

where E denotes the expectation value, E{c(x)} is the first moment and the variance is determined

from

Var {c(x)) = E{(c(x)-E{c(x)})*}

=E{c*(x)} - (E{c(x)})? (A2)

To estimare the (S/N) ratio we therefore have to determine the first and the second moments of the

correlation function ¢(x).

First moment

____ The correlation function of egs. (3) and (4) can be rewritten in an altemnative form

. L )
c(x) = g(x)&?™ * T Wy (x~fA) e =42 ® P(x)

=1
: L | _
= g(x)e?® * 3¢ [ &y—JA) W[ (x~y)e P dy ' @ P(x) (A3)
f=1 | —o
L

<
. .
)
e
“u

-
LY

]
',
o,
‘;_

where P(x) = Ja(x)] 2 and a(x) is the impulse response of the optical system and is a real function.

Calculating the first moment,

IR
PLA R A

I
- ”i“

P
.‘.

L o0 -] ) )
E{c)) =E{| T [ dy [ ds 8(y—18) Wy (s—y)e oY) g(s—x)el"’“"‘)] @P(x)} (A4
f=1 —oo —~c0
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Under the assumption that the phase ¢(x) is a random variable uniformly distributed in the interval
[-m, ], the last equation can be rewritten as
L o0 o0 o0 .
Elcx)} =% _[ dy _[ ds J' dz&y—(A)W, (x~y) g(s—2)
f=] —oo —o0 —o0

8z-y) P(z—x) (A.5)

where we employed the relation [10]

E{ e‘jo(s—)') eiQ(S'X) } = &x_y) (A.6)

Finally the equation (A.5) can be written as

L (-
Efe(x)) = 3 P(x—fA){ [ Wy(s—1A)g(s—fA)ds (A7)
f=1 —o0

The last relation can be interpreted as a set of L pulses spaced at a distance A, while the amplitude
of each pulse equals to the inner product between the input signal s(x) and the {-th component of
}_N(x). The term P(x —{A) describes the blurring effect due to the finite channel bandwidth (ideally
P(x) would be a é-function if the channel bandwidth were infinite). To separate spatially the inner
products we have to satisfy the condition that the spatial extension (width) of the function P(x) is

much smaller than the sampling distance, A.

Second moment

The second moment is determined from the correlation function c(x)
E{c*(x)} = E{c(x1) €" (x2)} |xymme (A-8)

The correlation function c(x) is given by
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L L= .
E{C(XI)C*(XZ)} =E z Z “dyldsl 5(}’1 —ﬁA)W{I (Sl —yl)g(sl _Xl)'

Nzt f2a) =0

e LS (V) ej"(s‘—x‘) J’dyﬂdS') y2 —f24).

C W, (52 —y2) 8 (53 - xp) PV T }@ Px; )P (x2).  (A9)

Using the relation

E|{ e—jd’(sl—y]) ej¢(s,—x1) CW(Sz-YZ) e-w(Sz—yz) }

= 8(y1 —X;) &(xz —y2)+ &sz ~s1 +y1 —¥2) &s1 -2 +X2 —X1) (A.10)

Eq. (A.9) can be rewritten as

- E{c(x1)c(x2)} =1 +72 -~ (A.11)

where

and

|
Jy={ - &y —x1) Kxz2—-ys2) " } ® P(x;) P (x2) |
1
|

Jo={ - &sy—s;+y1—Yy2) sy —s2+Xxp—X1) " - } ® P(x;)P"(x2)

Evaluating the integrals in terms J; and J, we obtain:
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L . - .
J1= 3 T Px -f1A) P (xy—f28) [ ds; Wy (s; =, 4).

’1:] {).=l

%

ol st il

“g(s —18) [ dsy Wy (s2~f2A)g (s =24)

5%

;
asit

—

= L L =
L=[dzi $ % [ dsy Wy (s1-118) g(s1—20) Wy, (51 =11 8)
—00 fi=lf,=1 -0

o

PP RS
‘n.
D -

(g (51 ~21) Plzy = x) PPz —( ~ (1) A= %2)
Substituting x; = x; = x the last equations can be rewritten as

L L =
11=Y ¥ P(x—f18)P* (x—f,4) [ ds; Wy "(s;-114)

{1 =1 lkl

gls1~£14) [ ds Wy, (s2-120) 8" (52 ~12).
L L= .

e B= T Y [ dsy Wy (s1-118) Wy, (51~£14)
fixt f2m1 =

[ dz1 g(s1-21)8 (51 —21) P21 ~x) P" (21 = x + (] = f1) A)

Assuming P(x) to be a narrow function we obtain:

U IPx-{'A) 2 f1=f={
Px—{’A)P (x—f,4) = 0 1%,
and
. |P(zy =x)|? fy=fo={’
P(z; =x)P (z; -x+ (2 -1)A) =14, f 21,

Substituting these last relations into J; and J, we obtain
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(A.12b)

(A.13a)

(A.13b)

(A.13c)

(A.13d)
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L D = »* ’ ’ -
=3 IPG={'A) ] | Wis—1"Dgs-f'a)ds|? (A.14a)
(=1 —o
= 'Ay|2 21p 2
I.=% ”d11d31|wr(51—7 MY lelsy -z 17 [Pz =x)|° (A.14b)
=1

To evaluate the variance given by Eq. (A.2) we first calculate the second term E{c(x)})? using

the result of Eq. (A.7),

2

L o0
|E{c(x)}|* = | ¥ P(x—fAR | Wy(s—fA)g(s~f8)ds
=1 —o

[

L L < .
Y T Px-fiA)P*x-fA) [ Wi (s—14)gs=f14)ds
lx=1 {1=1 0

\

1

v

3 | W (s=fA) g¥(s—f>A) ds

C .- - - - X - J

oo 2
= IPG-fAI?| [ Wils~FAIg(s-f M) ds (A.15)

where we have used the result of Eq. (A.13c) with P(x) being a narrow function. Comparing (A.15)
with J; from Eq. (A.14a) the variance from Eq (A.2) can be determined as

Var {c}=J,. (A.16)

Considering again that the function P(z —x) is much narrower than g(x), we evaluate the term

JzaS

el 0 OO OUOOOOBOO0GORDSOAOBOCON I N
OGO MR ) O O UL MR OO0 A
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L = )
Var (el = T [ dsiiWp(s; =¢'8))

J lei SL"Zl\‘z.P’""‘v”z

L = - o] v
=3 [ ds |WeGs =M1 lesi-01° [ P17 ds (A.17)
{'=] ~o0 —v/2

where v is the width of P(x).

We are interested in evaluating the S/N ratio at a point x = { A, and therefore we evaluate the

variance of c(x) at these locations,

L ©0
Var {cx=fA))= T [ ds|Wp(s;~1'A)|? gls; —1A)|?

(=1 -

v/2

[ 1P@)2dn (A.18)
-v/2

The S/N ratio can be employed in evaluating the dynamic range of the systemn, which is

defined as the output ratio of the maximum value of the signal to the maximum value of the noise.

The maximum value of the first moment at a location x = {A, will be determined by

E{cx)} =X (A.19)
where X is the spatial extension of the input information.

The maximum value of the variance at the origin is given by

L
Var (e0)=v 3 % =v—’2£(1_+1) (A.20)
or at any x =fA
LA g7
Var {c(x=fA)}=vX Y £-f (A.21)
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! The variance reaches its maximum at the origin, x = 0, and therefore the amplitude dynamic range,
(‘ - D, will satisfy the following inequality

()
" Dy 2 ——= (A22)

:: \/6—)25-(L+1)

where we have assumed that the sampling period of the phase process, & is equal to the width v of

9
2 the function P(x). Considering the relations
\
Q

‘)';}»‘ ax]d

Yy
y k X
LY SBPM = _A—

3.{

the dynamic range of eq. (A.21) can be rewritten as

D, = « [2SBPMK
L

~ Furthermore, the dynamic range of the intensity D, for a 2-D case will be given by

4
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o

4 SBP)K?
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(A.23)
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Figure Captions

Fig. 1. (a) Representation of the tensor by space multiplexing. The components of the tensor
are space-multiplexed with a period d, where d is equal to or larger than the spatial
extension (NA) of the tensor’s components, Wy, (x,y).

Fig 1 (b)  The output of matrix-tensor multiplication based on the space multiplexing
techniques.

Fig. 2. (a) Representation of the tensor by random phase coding. The components of the tensor
Wy (x,y) of spatial extension (NA) are multiplied by a random phase code which has
a pixel resolution of §. The ten<or components are shifted with respect to each other
with a period A = K § and then superimposed on one another.

Fig. 2. (b)  The output of matrix-tensor multiplication based on the random phase coding
technique.

Fig. 3. Comparison of phase coded and conventional matrix-tensor multiplication using
planar material. R? is the available space bandwidth product (SBP) provided by the
real-time nonlinear material (RTNM); N2 is the size of the input/output 2-D array.
To operate on a matrix of 1000x1000 the conventional method will require a SBP of
10%x10° from the RTNM, while the phase coded M-T multiplier will require only a
SBP of 2:10x2-10* for D = 100 and 6-10>x6:10° for D = 10 from RTNM.
Alternatively, given a SBP of 1000x1000 for the RTNM, the conventional M-T
muitiplier can accomodate a matrix of 32x32, while the phase coded M-T multiplier
will be able to accomodate a 50x50 matrix for D = 100 and 160x160 matrix for D =
10.

Fig. 4. Comparison of phase coded and conventional matrix-tensor multiplication using
volume material. R3 is the available space bandwidth product (SBP) provided by
real-time nonlinear material (RTNM); N? is the size of the input/output 2-D array.
To operate on a matrix of 1000x1000 arrays a conventional method will require a
SBP of 10*x10%x10* from RTNM, while the phase coded multiplier will require a
SBP less than 10°x103x10® for D = 100 and a SBP of less than 400x400x400 for D
= 10 from RTNM.
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Fig. 1. (@)  Representation of the tensor by space multiplexing. The components of the tensor
are space-multiplexed with a period d. where d is equal to or larger than the spatial
extension (NA) of the tensor’s components, W (x.V).
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Representation of the tensor by random phase coding. The components of the tensor
Wim(x,Y) of spatial extension NA are multiplied by a random phase code which has

Fig. 2. (a)

a pixel resolution of 4. The tensor components are shifted with respect to each other

K and then superimposed on one another.
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